Tổng quan một số phương pháp ổn định mái dốc

1. Đặt vấn đề

Phân tích ổn định mái dốc là một công việc rất quan trọng đối với các kỹ sư địa kỹ thuật nói riêng và kỹ sư xây dựng nói chung. Đây là cơ sở để đánh giá công trình ổn định hay mất an toàn.

Việc vận dụng các nguyên lý tính toán ổn định cơ bản của nền và mái dốc còn có nhiều điểm khác biệt dựa trên quan niệm khác nhau về mô hình các phần tử tính toán. Do vậy, bài báo sẽ tập trung đi sâu vào nghiên cứu phân tích các phương pháp tính toán ổn định mái dốc hiện đang được áp dụng, nhận xét các ưu nhược điểm của các phương pháp tính làm căn cứ cho người đọc có thể lựa chọn phương pháp thích hợp để ứng dụng trong thực tiễn nhằm tăng cường tính ổn định của mái dốc.

2. Tổng quan các phương pháp phân tích ổn định mái dốc

Hiện nay trong phân tích ổn định mái dốc, có các xu hướng chính thường được dùng như sau:

a. Sử dụng các phương pháp cân bằng tĩnh trong điều kiện tới hạn.

Cân bằng tĩnh trong điều kiện tới hạn (Limit Equilibrium Methods – LEM hoặc còn có tên nữa là phương pháp chia phân tố trượt, phân thỏi). Đến nay phương pháp phân thỏi được công nhận là phương pháp số để phân tích tính toán trượt đất với đất được coi là vật thể cứng – dẻo lý tưởng tuân theo Định luật Coulomb.

Bài toán phân tích tính toán trượt đất hiện nay được xếp vào lớp bài toán siêu tĩnh. Do vậy, để giải bài toán, các nhà khoa học phải dùng thêm các giả thiết vật lý liên quan đến lực tương tác giữa các thỏi khi chia thỏi khối đất trượt. Nếu sử dụng phương pháp này, người kỹ sư phải giả thiết trước vị trí và hình dạng mặt trượt. Sau đó viết các phương trình cân bằng tĩnh về lực và mô men cho mặt trượt giả định. Mặt trượt có thể được chia nhỏ thành các phân tố trượt với giả thiết là hệ số an toàn của các phân tố trượt là như nhau. Các phương trình cân bằng lực và mô men có thể được viết và giải cho từng phân tố trượt. Sự tương tác giữa các phân tố trượt với nhau được mô tả bởi các lực giữa các phân tố trượt.

Phương pháp này là phương pháp tính toán ổn định mái dốc ra đời sớm nhất. Khi mới ra đời các tác giả như Fellenius, Tezaghi, Tsugaev,…đã giả thiết bỏ hoàn toàn hoặc 1 phần lực tương tác giữa các thỏi. Sau đó, các tác giả khác chỉ xoay quanh vấn đề lực tương tác giữa các phân tố và để giải quyết vấn đề này họ đã phải đưa ra nhiều giả thiết khác nhau.

Phương pháp LEM khởi đầu từ Fellenius (năm 1936), sau đó phát triển thành phương pháp phân tố trượt bởi Bishop (1955). Sau Bishop, một loạt các tác giả khác đã tham gia nghiên cứu như: Janbu, Spencer, Sharma, Morgenstern-Price, Fredlund… Các phương pháp sau này chủ yếu phức tạp hóa mối quan hệ giữa lực giữa phân các tố trượt còn vẫn dựa trên nền là cân bằng tĩnh học. Nhưng phương pháp đầu tiên như Bishop hoặc Janbu’s Simplified chỉ thỏa mãn một trong hai điểu kiện cân bằng tĩnh (Ví dụ: hoặc là mô men như Bishop, hoặc là lực như Janbu’s Simplified). Có một điều lý thú là phương pháp của Bishop, dù ra đời đầu tiên và sử dụng những giả thiết khá sơ đẳng nhưng lại cho kết quả rất ấn tượng (không khác gì mấy so với những phương pháp phức tạp sau này như Morgenstern-Price hay GLE của Fredlund). Trong các phương pháp nêu trên Janbu’s Simplified là kém nhất (sử dụng một cái hệ số α không hiểu là lấy từ đâu).

Xác định mặt trượt theo phương pháp cân bằng tĩnh trong điều kiện tới hạn
Xác định mặt trượt theo phương pháp cân bằng tĩnh trong điều kiện tới hạn

Trước đây, khi kỹ thuật tính toán thô sơ, giả thiết bỏ hoàn toàn hoặc một thành phần của lực tương tác giữa các thỏi là cần thiết để có lời giải dùng cho thiết kế mái đất, sườn dốc; trong số này có các phương pháp Fellenius, Tezaghi, Tsugaev, Krey, Bishop đơn giản…

Khi máy tính điện tử cá nhân PC là phổ biến, việc xét đến các yếu tố vật lý liên quan đến lực tương tác như độ lớn, góc nghiêng, điểm đặt đã được nhiều nhà khoa học quan tâm nhiều vì sự nghiệp phát triển lý thuyết Cơ học đất và từ đó làm sáng tỏ những sai số mắc phải gây tranh luận khá nhiều hiện nay khi áp dụng. Trong số này cần kể đến các phương pháp sau : pp Spencer, pp Morgenstern-Price, pp GLE-Canada … giả thiết về góc nghiêng của lực tương tác, pp Sarma giả thiết quy luật biến thiên của thành phần đứng của lực tương tác, pp Janbu giả thiết về điểm đặt của lực tương tác.

Các phương pháp truyền thống nêu trên đã được nhiều cơ quan trong nước, nhiều công ty nước ngoài lập trình và được thương mại hoá sản phẩm. Trong số đó, phương pháp Bishop được dùng phổ biến ở nước ta, pp Janbu được quy định dùng ở Na Uy, có phần mềm thương mại, được thế giới công nhận là có cơ sở lý thuyết đáng tin cậy hơn cả.

Hiện nay, nhờ ứng dụng lý thuyết dẻo hiện đại của vật thể cứng – dẻo lý tưởng, bài toán phân tích tính toán mái đất được đặt lại theo dạng khác phù hợp hơn với bản chất vật lý của một hệ thống gồm nhiều phần tử đứng ở trạng thái cân bằng giới hạn (CBGH) và kết quả đạt được là đã đưa bài toán, được coi là siêu tĩnh thành bài toán tĩnh định mà không cần thêm giả thiết vật lý nên lời giải về mặt lý thuyết là đáng tin cậy.

Hai hạn chế cơ bản của LEM là:

  • Bỏ qua mối quan hệ ứng suất biến dạng của đất.
  • Kết quả tìm được phụ thuộc rất nhiều vào kinh nghiệm của kỹ sư. Nên nhớ giải bài toán ổn định mái dốc bẳng LEM là một quá trình thử sai với giả thiết là vị trí và hình dạng mặt trượt phải được đưa vào từ đầu.

b. Sử dụng phương pháp phần tử hữu hạn để tìm kiếm mặt trượt tới hạn.

Phương pháp này nếu so với LEM thì khác xa nhau. Sở dĩ nói vậy vì nếu sử dụng phương pháp phần tử hữu hạn, các điều kiện cân bằng ứng suất, biến dạng liên tục, quan hệ ứng suất biến dạng đều được thỏa mãn (các phương pháp LEM hoàn toàn không thỏa mãn điều kiện cân bằng ứng suất – chỉ là cân bằng lực). LEM hoàn toàn bỏ qua về quan hệ biến dạng.

Sử dụng phương pháp phần tử hữu hạn để xác định mặt trượt
Sử dụng phương pháp phần tử hữu hạn để xác định mặt trượt

Nếu như quan niệm rằng mặt trượt tiềm tàng là tập hợp những điểm có biến dạng cắt lớn tại đó tỷ số giữa cường độ chịu cắt và ứng suất cắt là nhỏ nhất thì việc sử dụng phương pháp phần tử hữu hạn để tìm kiếm những điểm này là hoàn toàn khả thi. Hạn chế của phương pháp phần tử hữu hạn đó là nếu như số liệu đầu vào không phản ánh trung thực sự ứng xử của đất thì kết quả biến dạng tính toán được là hoàn toàn vô nghĩa. Và đây chính là lý do chính cản trở sự ứng dụng rộng rãi của phương pháp phần tử hữu hạn trong phân tích ổn định mái dốc. So với phương pháp phần tử hữu hạn, LEM chỉ cần người dùng đưa vào những thông số hết sức dễ tìm như c, φ, γ là đảm bảo giải được kết quả.

c. Sử dụng quy hoạch động

Phương pháp sử dụng quy hoạch động chủ yếu nhằm khắc phục các hạn chế của hai phương pháp nêu trên. Cụ thể như sau:

Nếu so với LEM, thì quy hoạch động khắc phục được cả 2 hạn chế đã nêu. Cụ thể là hệ số an toàn được tính toán từ ứng suất “thực” bằng phương pháp phần tử hữu hạn chứ không phải bằng cân bằng tĩnh (tức là quan hệ ứng suất biến dạng được thỏa mãn). Quan trọng hơn đó là không cần phải giả thiết trước vị trí và hình dạng của mặt trượt. Nói một cách khác, mặt trượt tìm ra bởi quy hoạch động là duy nhất (unique).

Nếu so với phương pháp phần tử hữu hạn, hạn chế về số liệu đầu vào đã được khắc phục. Dù số liệu về E vẫn cần phải có khi phân tích nhưng giá trị E này không quá quan trọng (thậm chí có thể là hằng số) do quy hoạch động không dựa trên trường biến dạng để tìm ra mặt trượt.

d. Phương pháp mặt trượt trụ tròn tổng quát

Theo kết quả quan trắc thực tế các trường hợp nền đất bị trượt và các thí nghiệm nén đất thì khi nền đất mất sức chịu tải, đất nền bị đẩy trượt theo những mặt cong phức tạp. Các phương pháp dùng mặt trượt giả định không giải quyết vấn đề tìm hình dáng của mặt trượt mà gán cho mặt trượt những hình dạng nhất định để tìm ra vị trí của chúng và xác định hệ số an toàn ổn định chống trượt cho nền.

Các phương pháp tính toán dựa trên các mặt trượt giả định là những mặt phẳng khác với thực tế, hiện nay rất ít dùng. Mặt khác, khi lựa chọn một mặt trượt phức tạp hơn như mặt cong xoắn logarit hay có dạng không theo quy tắc có thể cho kết quả gần với giá trị thực nhưng việc phân tích và tính toán sẽ trở nên dài dòng và phức tạp.

Do đó phương pháp giả thiết mặt trượt trụ tròn coi mặt trượt có dạng hình trụ tròn sẽ cho kết quả phù hợp với thực tế mà không quá phức tạp.

Nội dung tính toán của phương pháp:

Giả thiết trước một tâm trượt, với một tâm trượt giả thiết các mặt trượt trụ tròn, xác định hệ số ổn định của khối đất trượt theo từng mặt trượt, tìm hệ số ổn định nhỏ nhất Kmin ứng cho tâm trượt này.

Giả thiết các tâm trượt khác rồi xác định các hệ số ổn định Kmin cho từng tâm trượt.

So sánh các trị số Kmin, tìm trị số Kmin nhỏ nhất. Tâm trượt ứng với Kmin nhỏ nhất là tâm trượt nguy hiểm nhất, mặt trượt tương ứng sẽ là mặt trượt nguy hiểm nhất.

Sơ đồ xét điều kiện cân bằng về cơ học trên mặt trượt của nó
Sơ đồ xét điều kiện cân bằng về cơ học trên mặt trượt của nó (bề dày khối đất là 1 m)

Thường trong trường hợp chiều cao ta luy nền đường lớn hơn 12,0m thì khi thiết kế người ta cần nghiệm toán mức độ ổn định toàn khối về mặt cơ học.

* Bài toán chung

Xét theo điều kiện cân bằng cơ học của một mảnh đất bất kì trên mặt trượt của nó ta có:

– Lực gây trượt (kéo khối đất i trượt trên mặt trượt) là:

Ti = Qi.sinαi         (1.1)                  

– Lực giữ cản trở mảnh đất i trượt là:

Trong đó Qi là trọng lượng mảnh đất i đang xét (Qi= di. hi. γ.l.m) và γ, c, φ là dung trọng lực dính, góc nội ma sát của đất với cá kí hiêu khác nhau như ở hình vẽ. Khi Ti > Ni thì tình trạng mất ổn định sẽ xảy ra, còn khi Ti = Ni thì mảnh đất ở vào trạng thái cân bằng giới hạn. Với (1.1) và (1.2) ta có điều kiện cân bằng giới hạn đó là:

Nếu taluy nền đường bảo đảm góc α của nó thay đổi theo hi và luôn luôn phù hợp với điều kiện (1.3) thì về mặt cơ học mà nói taluy sẽ bảo đảm ổn định toàn khối. Theo (1.3) nếu đất các loại cát có lực dính c = 0 thì rõ ràng muốn ổn định taluy phải có độ dốc bằng góc nghỉ tự nhiên (φ). Điều này hoàn toàn được chứng thực trên thực tế. Còn đối với đất dính thì rõ ràng điều kiện ổn định còn phụ thuộc vào chiều cao mái taluy hi và khi hi → 0 thì αi →900, trái lại hi→∞ thì αi → φ. Như vậy, với đất dính cấu tạo mái taluy nên có dạng trên dốc dưới thoải.

3. Kết luận

Khi tính toán ổn định nền đường và mái dốc taluy, ta phải đảm bảo các yêu cầu chung đối với nền đường. Dựa trên các điều kiện cụ thể của nền đường như: điều kiện địa chất thủy văn, chiều cao hay chiều sâu của nền đường, loại đất đá để đắp nền, phương pháp thi công… để chọn sử dụng phương pháp phân tích tính toán ổn định mái dốc cho phù hợp.

Tuy nhiên cùng với sự phát triển của công nghệ thông tin, sự ra đời của các phần mềm tính toán nền đất như Plaxis, Geo slope… thì việc tính toán ổn định ngày càng trở nên nhanh chóng và chính xác hơn.

KS. Lê Quang Huy 

ST: http://www.dccd.vn/vi/tin-tuc/chi-tiet/234/

TÀI LIỆU THAM KHẢO

[1] GS.TS. Dương Học Hải – Nguyễn Xuân Trục.Thiết kế đường ô tô – tập II. Nhà xuất bản Giáo dục, Hà Nội 2005.

[2] GS.TS. Vũ Đình Phụng – Ths. Vũ Quốc Cường. Công nghệ và vật liệu mới trong xây dựng đường – tập I. Nhà xuất bản Xây dựng, Hà Nội 2005.

[3] http://www.vi.ketcau.wiki.com  &  http://www.vi.wikipedia.com.

[4] Ths. Trần Quang Huy. Các phương pháp giữ ổn định mái dốc & Những nguyên lý cơ bản về mái dốc và ổn định mái dốc tự nhiên.